Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Effect of Speech Repetition Rate on Neural Activation in Healthy Adults: Implications for Treatment of Aphasia and Other Fluency Disorders.

Identifieur interne : 000713 ( Main/Exploration ); précédent : 000712; suivant : 000714

The Effect of Speech Repetition Rate on Neural Activation in Healthy Adults: Implications for Treatment of Aphasia and Other Fluency Disorders.

Auteurs : Sarah Marchina [États-Unis] ; Andrea Norton [États-Unis] ; Sandeep Kumar [États-Unis] ; Gottfried Schlaug [États-Unis]

Source :

RBID : pubmed:29535619

Abstract

Functional imaging studies have provided insight into the effect of rate on production of syllables, pseudowords, and naturalistic speech, but the influence of rate on repetition of commonly-used words/phrases suitable for therapeutic use merits closer examination. Aim: To identify speech-motor regions responsive to rate and test the hypothesis that those regions would provide greater support as rates increase, we used an overt speech repetition task and functional magnetic resonance imaging (fMRI) to capture rate-modulated activation within speech-motor regions and determine whether modulations occur linearly and/or show hemispheric preference. Methods: Twelve healthy, right-handed adults participated in an fMRI task requiring overt repetition of commonly-used words/phrases at rates of 1, 2, and 3 syllables/second (syll./sec.). Results: Across all rates, bilateral activation was found both in ventral portions of primary sensorimotor cortex and middle and superior temporal regions. A repeated measures analysis of variance with pairwise comparisons revealed an overall difference between rates in temporal lobe regions of interest (ROIs) bilaterally (p < 0.001); all six comparisons reached significance (p < 0.05). Five of the six were highly significant (p < 0.008), while the left-hemisphere 2- vs. 3-syll./sec. comparison, though still significant, was less robust (p = 0.037). Temporal ROI mean beta-values increased linearly across the three rates bilaterally. Significant rate effects observed in the temporal lobes were slightly more pronounced in the right-hemisphere. No significant overall rate differences were seen in sensorimotor ROIs, nor was there a clear hemispheric effect. Conclusion: Linear effects in superior temporal ROIs suggest that sensory feedback corresponds directly to task demands. The lesser degree of significance in left-hemisphere activation at the faster, closer-to-normal rate may represent an increase in neural efficiency (and therefore, decreased demand) when the task so closely approximates a highly-practiced function. The presence of significant bilateral activation during overt repetition of words/phrases at all three rates suggests that repetition-based speech production may draw support from either or both hemispheres. This bihemispheric redundancy in regions associated with speech-motor control and their sensitivity to changes in rate may play an important role in interventions for nonfluent aphasia and other fluency disorders, particularly when right-hemisphere structures are the sole remaining pathway for production of meaningful speech.

DOI: 10.3389/fnhum.2018.00069
PubMed: 29535619
PubMed Central: PMC5835070


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Effect of Speech Repetition Rate on Neural Activation in Healthy Adults: Implications for Treatment of Aphasia and Other Fluency Disorders.</title>
<author>
<name sortKey="Marchina, Sarah" sort="Marchina, Sarah" uniqKey="Marchina S" first="Sarah" last="Marchina">Sarah Marchina</name>
<affiliation wicri:level="4">
<nlm:affiliation>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Beth Israel Deaconess Medical Center, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Beth Israel Deaconess Medical Center, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Norton, Andrea" sort="Norton, Andrea" uniqKey="Norton A" first="Andrea" last="Norton">Andrea Norton</name>
<affiliation wicri:level="4">
<nlm:affiliation>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Beth Israel Deaconess Medical Center, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Beth Israel Deaconess Medical Center, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Sandeep" sort="Kumar, Sandeep" uniqKey="Kumar S" first="Sandeep" last="Kumar">Sandeep Kumar</name>
<affiliation wicri:level="4">
<nlm:affiliation>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Beth Israel Deaconess Medical Center, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Beth Israel Deaconess Medical Center, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schlaug, Gottfried" sort="Schlaug, Gottfried" uniqKey="Schlaug G" first="Gottfried" last="Schlaug">Gottfried Schlaug</name>
<affiliation wicri:level="4">
<nlm:affiliation>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Beth Israel Deaconess Medical Center, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Beth Israel Deaconess Medical Center, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29535619</idno>
<idno type="pmid">29535619</idno>
<idno type="doi">10.3389/fnhum.2018.00069</idno>
<idno type="pmc">PMC5835070</idno>
<idno type="wicri:Area/Main/Corpus">000810</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000810</idno>
<idno type="wicri:Area/Main/Curation">000810</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000810</idno>
<idno type="wicri:Area/Main/Exploration">000810</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Effect of Speech Repetition Rate on Neural Activation in Healthy Adults: Implications for Treatment of Aphasia and Other Fluency Disorders.</title>
<author>
<name sortKey="Marchina, Sarah" sort="Marchina, Sarah" uniqKey="Marchina S" first="Sarah" last="Marchina">Sarah Marchina</name>
<affiliation wicri:level="4">
<nlm:affiliation>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Beth Israel Deaconess Medical Center, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Beth Israel Deaconess Medical Center, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Norton, Andrea" sort="Norton, Andrea" uniqKey="Norton A" first="Andrea" last="Norton">Andrea Norton</name>
<affiliation wicri:level="4">
<nlm:affiliation>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Beth Israel Deaconess Medical Center, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Beth Israel Deaconess Medical Center, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Sandeep" sort="Kumar, Sandeep" uniqKey="Kumar S" first="Sandeep" last="Kumar">Sandeep Kumar</name>
<affiliation wicri:level="4">
<nlm:affiliation>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Beth Israel Deaconess Medical Center, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Beth Israel Deaconess Medical Center, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schlaug, Gottfried" sort="Schlaug, Gottfried" uniqKey="Schlaug G" first="Gottfried" last="Schlaug">Gottfried Schlaug</name>
<affiliation wicri:level="4">
<nlm:affiliation>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Beth Israel Deaconess Medical Center, Boston, MA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Beth Israel Deaconess Medical Center, Boston, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in human neuroscience</title>
<idno type="ISSN">1662-5161</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Functional imaging studies have provided insight into the effect of rate on production of syllables, pseudowords, and naturalistic speech, but the influence of rate on repetition of commonly-used words/phrases suitable for therapeutic use merits closer examination.
<b>Aim:</b>
To identify speech-motor regions responsive to rate and test the hypothesis that those regions would provide greater support as rates increase, we used an overt speech repetition task and functional magnetic resonance imaging (fMRI) to capture rate-modulated activation within speech-motor regions and determine whether modulations occur linearly and/or show hemispheric preference.
<b>Methods:</b>
Twelve healthy, right-handed adults participated in an fMRI task requiring overt repetition of commonly-used words/phrases at rates of 1, 2, and 3 syllables/second (syll./sec.).
<b>Results:</b>
Across all rates, bilateral activation was found both in ventral portions of primary sensorimotor cortex and middle and superior temporal regions. A repeated measures analysis of variance with pairwise comparisons revealed an overall difference between rates in temporal lobe regions of interest (ROIs) bilaterally (
<i>p</i>
< 0.001); all six comparisons reached significance (
<i>p</i>
< 0.05). Five of the six were highly significant (
<i>p</i>
< 0.008), while the left-hemisphere 2- vs. 3-syll./sec. comparison, though still significant, was less robust (
<i>p</i>
= 0.037). Temporal ROI mean beta-values increased linearly across the three rates bilaterally. Significant rate effects observed in the temporal lobes were slightly more pronounced in the right-hemisphere. No significant overall rate differences were seen in sensorimotor ROIs, nor was there a clear hemispheric effect.
<b>Conclusion:</b>
Linear effects in superior temporal ROIs suggest that sensory feedback corresponds directly to task demands. The lesser degree of significance in left-hemisphere activation at the faster, closer-to-normal rate may represent an increase in neural efficiency (and therefore, decreased demand) when the task so closely approximates a highly-practiced function. The presence of significant bilateral activation during overt repetition of words/phrases at all three rates suggests that repetition-based speech production may draw support from either or both hemispheres. This bihemispheric redundancy in regions associated with speech-motor control and their sensitivity to changes in rate may play an important role in interventions for nonfluent aphasia and other fluency disorders, particularly when right-hemisphere structures are the sole remaining pathway for production of meaningful speech.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29535619</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1662-5161</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>12</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in human neuroscience</Title>
<ISOAbbreviation>Front Hum Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>The Effect of Speech Repetition Rate on Neural Activation in Healthy Adults: Implications for Treatment of Aphasia and Other Fluency Disorders.</ArticleTitle>
<Pagination>
<MedlinePgn>69</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fnhum.2018.00069</ELocationID>
<Abstract>
<AbstractText>Functional imaging studies have provided insight into the effect of rate on production of syllables, pseudowords, and naturalistic speech, but the influence of rate on repetition of commonly-used words/phrases suitable for therapeutic use merits closer examination.
<b>Aim:</b>
To identify speech-motor regions responsive to rate and test the hypothesis that those regions would provide greater support as rates increase, we used an overt speech repetition task and functional magnetic resonance imaging (fMRI) to capture rate-modulated activation within speech-motor regions and determine whether modulations occur linearly and/or show hemispheric preference.
<b>Methods:</b>
Twelve healthy, right-handed adults participated in an fMRI task requiring overt repetition of commonly-used words/phrases at rates of 1, 2, and 3 syllables/second (syll./sec.).
<b>Results:</b>
Across all rates, bilateral activation was found both in ventral portions of primary sensorimotor cortex and middle and superior temporal regions. A repeated measures analysis of variance with pairwise comparisons revealed an overall difference between rates in temporal lobe regions of interest (ROIs) bilaterally (
<i>p</i>
< 0.001); all six comparisons reached significance (
<i>p</i>
< 0.05). Five of the six were highly significant (
<i>p</i>
< 0.008), while the left-hemisphere 2- vs. 3-syll./sec. comparison, though still significant, was less robust (
<i>p</i>
= 0.037). Temporal ROI mean beta-values increased linearly across the three rates bilaterally. Significant rate effects observed in the temporal lobes were slightly more pronounced in the right-hemisphere. No significant overall rate differences were seen in sensorimotor ROIs, nor was there a clear hemispheric effect.
<b>Conclusion:</b>
Linear effects in superior temporal ROIs suggest that sensory feedback corresponds directly to task demands. The lesser degree of significance in left-hemisphere activation at the faster, closer-to-normal rate may represent an increase in neural efficiency (and therefore, decreased demand) when the task so closely approximates a highly-practiced function. The presence of significant bilateral activation during overt repetition of words/phrases at all three rates suggests that repetition-based speech production may draw support from either or both hemispheres. This bihemispheric redundancy in regions associated with speech-motor control and their sensitivity to changes in rate may play an important role in interventions for nonfluent aphasia and other fluency disorders, particularly when right-hemisphere structures are the sole remaining pathway for production of meaningful speech.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Marchina</LastName>
<ForeName>Sarah</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beth Israel Deaconess Medical Center, Boston, MA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Norton</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beth Israel Deaconess Medical Center, Boston, MA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Sandeep</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beth Israel Deaconess Medical Center, Boston, MA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schlaug</LastName>
<ForeName>Gottfried</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Music, Stroke Recovery, and Neuroimaging Laboratories, Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beth Israel Deaconess Medical Center, Boston, MA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DC008796</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Hum Neurosci</MedlineTA>
<NlmUniqueID>101477954</NlmUniqueID>
<ISSNLinking>1662-5161</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">bilateral activation</Keyword>
<Keyword MajorTopicYN="N">fMRI</Keyword>
<Keyword MajorTopicYN="N">fluency</Keyword>
<Keyword MajorTopicYN="N">overt repetition</Keyword>
<Keyword MajorTopicYN="N">right-hemisphere language networks</Keyword>
<Keyword MajorTopicYN="N">speech rate</Keyword>
<Keyword MajorTopicYN="N">speech-motor function</Keyword>
<Keyword MajorTopicYN="N">temporal lobes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>02</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29535619</ArticleId>
<ArticleId IdType="doi">10.3389/fnhum.2018.00069</ArticleId>
<ArticleId IdType="pmc">PMC5835070</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Neurosci. 2008 Apr 9;28(15):3958-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Commun Disord. 2000 Sep-Oct;33(5):391-427; quiz 428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11081787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Intelligence. 2014 Jan;42(100):22-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24489416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2002 Jun;16(2):513-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12030834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cognition. 2004 May-Jun;92(1-2):67-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2008 Feb 1;39(3):1429-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18035557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2012 May;16(5):269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22521208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2007 Apr 9;45(8):1697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17292926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acoust Soc Am. 2016 Jan;139(1):215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26827019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 1996 Nov 4;7(15-17):2791-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8981469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):18035-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19004769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Speech Hear Disord. 1987 Nov;52(4):367-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3312817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2001 Jul;14(1 Pt 1):182-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2013 Dec 10;7:831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24339811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2001 Jan;124(Pt 1):83-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11133789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Lang. 2006 Jun;97(3):343-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16516956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2011 Oct 25;5:82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22046152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Psychol. 1970 Oct;26(4):453-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5512607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Struct Funct. 2016 Jul;221(6):3337-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26411871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Feb 20;279(5354):1213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9469813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Lang. 2000 Nov;75(2):259-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11049668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1997 Jan 1;17(1):353-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8987760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2012 Apr;1252:237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22524365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Nov 1;33(2):628-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16956772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Speech Lang. 2002 Nov;23(4):231-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12461723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stroke. 2011 Aug;42(8):2251-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21719773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2002 Jan;15(1):39-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11747099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13464-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11698690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Jan 1;29(1):46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Lang. 2004 Jan;88(1):148-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14698739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 1971 Mar;9(1):97-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5146491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Lang. 2008 Nov;107(2):102-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18294683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2005 Jan;57(1):8-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15597383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Neurosci. 2003 Jun 26;4:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12828789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2005 Feb 22;64(4):700-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Linguist Phon. 2007 Mar;21(3):159-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17364624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Lang. 2005 Apr;93(1):20-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15766765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Inj. 2017;31(2):140-150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27740867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Speech Hear Res. 1983 Jun;26(2):231-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6887810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurosci. 2015 Feb 11;9:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25717291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2000 Jun 23;287(2):156-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2007 May;8(5):393-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17431404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Cogn Brain Res. 1994 Jul;2(1):31-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7812176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 1998 May 15;247(2-3):187-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9655624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1999 Mar 27;353(9158):1057-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10199354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2012 Mar 14;32(11):3786-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22423099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychol Rev. 2007 Jun;17(2):157-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17525865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pro Fono. 2009 Jan-Mar;21(1):46-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19360258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Linguist Phon. 2004 Jan-Feb;18(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15053265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 1997 Jan;77(1):476-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9120588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 1992 Nov 9;146(2):179-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1491785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Aug 1;32(1):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16631384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2001 Jan;13(1):101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11133313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Nov 22;11(11):e0166872</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27875590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2017 May 15;152:628-638</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28268122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2008 Nov;29(11):1231-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17948887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2002 Aug;125(Pt 8):1829-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12135973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Music Percept. 2008 Apr 1;25(4):315-323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21197418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25267658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2005 Mar;8(3):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15723061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1970 Nov 27;170(3961):940-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5475022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Codas. 2016 Jan-Feb;28(1):41-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27074188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Speech Lang Hear Res. 2012 Oct;55(5):S1518-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23033445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2016 Apr 26;86(17 ):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27029627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 1996 Nov;8(11):2236-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8950088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 1996 Jun;119 ( Pt 3):919-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8673502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2009 Jul;1169:385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19673813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Aug 15;32(2):821-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16730195</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Université Harvard</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Marchina, Sarah" sort="Marchina, Sarah" uniqKey="Marchina S" first="Sarah" last="Marchina">Sarah Marchina</name>
</region>
<name sortKey="Kumar, Sandeep" sort="Kumar, Sandeep" uniqKey="Kumar S" first="Sandeep" last="Kumar">Sandeep Kumar</name>
<name sortKey="Kumar, Sandeep" sort="Kumar, Sandeep" uniqKey="Kumar S" first="Sandeep" last="Kumar">Sandeep Kumar</name>
<name sortKey="Marchina, Sarah" sort="Marchina, Sarah" uniqKey="Marchina S" first="Sarah" last="Marchina">Sarah Marchina</name>
<name sortKey="Norton, Andrea" sort="Norton, Andrea" uniqKey="Norton A" first="Andrea" last="Norton">Andrea Norton</name>
<name sortKey="Norton, Andrea" sort="Norton, Andrea" uniqKey="Norton A" first="Andrea" last="Norton">Andrea Norton</name>
<name sortKey="Schlaug, Gottfried" sort="Schlaug, Gottfried" uniqKey="Schlaug G" first="Gottfried" last="Schlaug">Gottfried Schlaug</name>
<name sortKey="Schlaug, Gottfried" sort="Schlaug, Gottfried" uniqKey="Schlaug G" first="Gottfried" last="Schlaug">Gottfried Schlaug</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000713 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000713 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29535619
   |texte=   The Effect of Speech Repetition Rate on Neural Activation in Healthy Adults: Implications for Treatment of Aphasia and Other Fluency Disorders.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29535619" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021